Oxygen Absorption Capability of YBaCo₄O₇₊₈

Samuli Räsänen,^{1,2} Hisao Yamauchi,^{1,2} and Maarit Karppinen^{*1,2}

¹Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, F1-02015 TKK, Finland

²Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503

(Received February 25, 2008; CL-080206; E-mail: maarit.karppinen@tkk.fi)

Various powerful oxygenation approaches were tested in order to find the limits of the oxygen-storage capability of $YBaCo₄O_{7+\delta}$. By means of extreme solid-medium high-pressure oxygenation employing $KClO₃$ as an oxygen generator the phase was successfully loaded with excess oxygen up to $\delta \approx 1.56$.

The YBaCo₄O_{7+ δ} phase has a unique ability to reversibly intake/release appreciably large amounts of oxygen at low temperatures.¹ Accordingly the phase is believed to be a promising candidate for an efficient oxygen storage/separator material.² In its as-synthesized oxygen-poor ($\delta = 0$) form, YBaCo₄O_{7+ δ} (with the mean oxidation state of cobalt at $+2.25$) possesses a hexagonal crystal structure that consists of two types of layers of corner-sharing CoO⁴ tetrahedra in a 1:3 ratio.³ Through atmospheric-pressure oxygen annealing at low temperatures it is possible to load the as-synthesized samples with excess oxygen up to $\delta \approx 1.3$.¹ In the present work, a variety of powerful post-synthesis oxidation methods were tested for their capability to oxygenate the YBaCo₄O_{7+ δ} phase. The purpose was to establish the maximum amount of excess oxygen that can be incorporated into the YBaCo₄O_{7+ δ} lattice.

High-pressure (HP) techniques have proven their superiority in stabilizing unusually high oxidation states of transition metals in their oxides.⁴ In the present work, we employed two different HP approaches, i.e. gas-medium $(10-100 \text{ atm } O_2)$ and solidmedium $(1-5.10^4 \text{ atm} \text{ plus KClO}_3 \text{ as an oxygen generator})$ treatments. From previous works on various functional cobalt oxide materials, chemical oxidation methods have been found promising as well.5,6 Therefore, in addition to the HP techniques we tested the capability of a $Br₂/H₂O$ dispersion to oxidize $YBaCo₄O_{7+\delta}$. Moreover, for the sake of comparison normalpressure annealing experiments in oxygen, air, and nitrogen atmospheres were performed.

The master sample of YBaCo₄O_{7+ δ} was synthesized by an EDTA chelation method.¹ Stoichiometric amounts of Y_2O_3 , $Ba(NO₃)₂$, and $Co(NO₃)₂·6H₂O$ were dissolved in a concentrated $HNO₃$ solution from which the metal ions were chelated with an EDTA/NH₃ solution. After evaporating the solvent and burning the residue, the remaining ash was ground, pressed into pellets, and sintered in an N_2 gas flow at 1050 °C for 20 h. From iodometric titration, oxygen content of the thus synthesized XRD-pure YBaCo₄O_{7+ δ} sample (Sample B) was determined at $\delta = 0.13$. A nearly oxygen-stoichiometric sample of $\delta = 0.03$ (Sample A) was obtained by annealing a specimen of Sample B powder in a perfectly air-tight thermobalance (MAC Science TG-DTA 2000S) in flowing N_2 gas at 500 °C for 2 h.

All oxidation experiments were carried out for specimens of Sample B powder. Table 1 summarizes the samples prepared. The chemical oxidation experiment (to obtain Sample C) was performed for a 150-mg specimen in a 20-mL glass vial at room temperature using a 1:1 (in terms of mass) dispersion of $Br₂$ and $H₂O$ as an oxidation medium for an immersion time of 20 h. Annealing experiments in air (Sample D) and $1 \text{ atm } O_2$ (Sample E) were carried out for 150-mg specimens in a thermobalance at 340° C for 24 h. Gas-medium HP experiments were carried out for 150-mg specimens in a two-cell-type autoclave at 340° C for 24 h under oxygen partial pressures of 10 atm (Sample F) and 100 atm (Sample G). For the solid-medium HP experiments a cubic-anvil-type apparatus was used. A 50-mg specimen was mixed with 50–200 mol % of $KClO₃$ and sealed in a gold capsule for HP treatment at 500° C and $1-5.10^4$ atm. During such HP treatment KClO₃ acts as an efficient in situ oxygen source upon decomposing to KCl (which was then washed out from the product with hot deionized water and ethanol). The best oxygenation result was achieved at 2.10^4 atm using 125 mol % of KClO₃ (Sample H): the lower pressures and/or lower $KClO₃$ contents ended up with samples with lower oxygen contents, whereas application of pressures higher than $2.10⁴$ atm was found to destroy the crystal structure without increasing the oxygen content.

For all the samples, A–H, the precise oxygen content was analyzed with an accuracy of ± 0.01 by means of three to five parallel iodometric titration experiments.⁷ The results are given in Table 1. Chemical oxidation with $Br₂$ was found clearly less effective than the various annealing techniques in introducing excess oxygen into the YBaCo₄O_{7+ δ} lattice, yielding a δ value as low as 0.38. For the samples annealed in an oxygen-containing atmosphere, the amount of oxygen loaded in the sample was found to increase with increasing oxygen partial pressure. From Table 1, δ values of 1.01, 1.19, 1.32, and 1.46 were obtained when the annealing was performed in 0.2, 1, 10, and 100 atm $O₂$ gas, respectively. Then, most importantly, for the sample oxygenated by means of the solid-medium HP technique (at 2.10^4 atm in the presence of 125 mol % of KClO₃) a recordhigh oxygen-content value of $\delta = 1.56$ was reached, which corresponds to the mean Co oxidation state of $+3.03$.

Table 1. Summary of the present YBaCo₄O_{7+ δ} samples: oxygenation conditions and the resultant oxygen contents, together with the crystal structure data refined in space group $P6₃mc$ for samples A–C and $Pbc2₁$ for samples D–H. The lattice volume V is calculated per one formula unit

Sample	δ	a/A		$b/\text{\AA}$ $c/\text{\AA}$ $V/\text{\AA}^3$	
A: N_2 , 1 atm, 500 °C	0.03	6.298		6.298 10.269 176.4	
B: as-synthesized	0.13		6.301 6.301 10.243 176.1		
C: Br_2/H_2O , $25 °C$	0.38	6.276		6.276 10.272 175.2	
D: air, 1 atm, 340° C	1.01		12.755 10.827 10.138 175.0		
E: O_2 , 1 atm, 340 °C	1.19	12.710	10.888 10.109 174.9		
F: O_2 , 10 atm, 340 °C		1.32 12.672 10.884 10.101			174.1
G: O_2 , 100 atm, 340 °C		1.46 12.689 10.857 10.096 173.9			
H: KClO ₃ , 2.10^4 atm, 500° C 1.56 12.695 10.899 10.031 173.5					

Figure 1. XRD patterns for the present YBaCo₄O_{7+ δ} samples, A–H. Indices are for Sample A (D) in space group $P6_3mc$ $(Pbc2₁)$.

All the samples were also characterized by X-ray powder diffraction (XRD) measurements (Rigaku RINT-2000 diffractometer equipped with a rotating Cu anode; Cu K α radiation), see Figure 1. With increasing oxygen content, i.e., when going from Sample A to Sample H, the 004 reflection about $2\theta =$ 35° is noticeably shifted to higher 2θ angles, as highlighted in the right-hand-side panel of Figure 1.

From the XRD data, the lattice parameters were refined using the software JANA 2000 in the profile-fitting mode. The parent oxygen-stoichiometric $YBaCo₄O₇$ phase is known to crystallize in the hexagonal space group $P6_3mc$.³ With increasing oxygen content the hexagonal symmetry apparently changes to orthorhombic symmetry. 8 Here we employed space group P6₃mc for the samples with δ < 1.0 and space group Pbc2₁ for $\delta \geq 1.0$. The latter space group (with a mixture of tetrahedrally and octahedrally coordinated cobalt) was very recently suggested by Chmaissem et $al⁹$ on the basis of synchrotron X-ray and neutron powder diffraction data for their sample with $\delta \approx 1.1$. The lattice parameters are given in Table 1. In Figure 2, the c parameter is plotted together with the cell volume V (calculated per one formula unit) against the excess-oxygen content, δ . Both c and V systematically decrease with increasing δ , as a consequence of shrinkage of the ionic radius of cobalt due to oxidation.

To conclude, we were able to load the YBaCo₄O_{7+ δ} lattice with a record-large excess-oxygen amount of $\delta \approx 1.56$ by means of an ultrahigh-pressure oxygenation treatment $(2.10⁴ atm,$ 125 mol % KClO₃ as an excess-oxygen source). This is supposed to be close to the maximum value of δ tolerated for the phase,

Figure 2. Evolution of the values of lattice parameter c (\odot) and unit lattice volume $V(\bullet)$ with increasing δ in YBaCo₄O_{7+ δ}.

since all our efforts to increase either the pressure or the amount of KClO₃ were found to destroy the parent YBaCo₄O_{7+ δ} structure. Additionally, a series of ''oxygen-engineered'' samples of $YBaCo₄O_{7+\delta}$ was realized (through various oxygenation treatments under milder conditions) to show that the YBaCo₄O_{7+ δ} lattice monotonically contracts upon the oxygen insertion.

The present work was supported by a Grant for R & D of New Interdisciplinary Fields in Nanotechnology and Materials Program of MEXT of Japan and also by Tekes (no. 1726/31/ 07) and Academy of Finland (nos. 110433 and 116254).

References

- 1 M. Karppinen, H. Yamauchi, S. Otani, T. Fujita, T. Motohashi, Y.-H. Huang, M. Valkeapää, H. Fjellvåg, Chem. Mater. 2006, 18, 490.
- 2 M. Karppinen, H. Yamauchi, H. Fjellvåg, T. Motohashi, PCT/JP2006313436, Int. Patent Appl., Filed June 6, 2006.
- 3 M. Valldor, M. Andersson, Solid State Sci. 2002, 4, 923.
- 4 H. Yamauchi, M. Karppinen, Supercond. Sci. Technol. 2000, 13, R33.
- 5 K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, T. Sasaki, Nature 2003, 422, 53.
- 6 L. Karvonen, S. Räsänen, H. Yamauchi, M. Karppinen, Chem. Lett. 2007, 36, 1176.
- 7 M. Karppinen, M. Matvejeff, K. Salomäki, H. Yamauchi, J. Mater. Chem. 2002, 12, 1761.
- 8 M. Valkeapää, M. Karppinen, T. Motohashi, R.-S. Liu, J.-M. Chen, H. Yamauchi, Chem. Lett. 2007, 36, 1368.
- 9 O. Chmaissem, H. Zheng, A. Huq, P. W. Stephens, J. F. Mitchell, J. Solid State Chem. 2008, 181, 664.